A common scientific approach to study organismal function is through analysis of perturbed phenotypes and subsequent comparison to healthy individuals. The aim of this research project is to understand resilience and adaptability of corals in regard to anticipated global and local environmental alterations as well as beneficial coral metaorganism assemblages. We do this by physiological and molecular profiling of healthy and stressed coral holobionts (i.e. coral host, symbiotic algae, microbial community) exposed to different environments/stressors. The metaorganism framework will allow us to not only elucidate coral function in healthy and stressed corals, but to understand the differential effects on distinct coral holobiont members.
Photographs of (a) freshly collected Eguchipsammia fistula specimen (arrowhead indicates tissue border). (b) Tissue overgrowing PVC substrate in long-term reared E. fistula (arrowhead indicates tissue; black asterix indicates aquaria glue). (c) Polyp proliferation in long-term reared E. fistula (arrowhead indicates newly grown polyp). (Picture and legend taken from: Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity. A. Roik, T. Röthig, C. Roder, P.J. Müller, C.R. Voolstra, PeerJ 2015, 3:e734)
Prof. Christian Wild, University of Bremen, Germany
Prof. Jörg Wiedenmann, University Southampton, UK
Prof. Abdulmoshin Al-Sofyani, King Abdulaziz University (KAU), Saudi Arabia
Prof. Christopher J. Howe, University of Cambridge, UK
Prof. Todd C. LaJeunesse, Penn State University, USA
Prof. John Burt, New York University Abu Dhabi, UAE
Currently involved from our lab
Prof. Christian R. Voolstra
Dr. Maren Ziegler
Anna Roik (Ph.D. student)
Till Röthig (Ph.D. student)
Ghaida Hadaidi (Ph.D. student)
Nitrogen cycling in corals: the key to understanding holobiont functioning?
Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C
Trends in Microbiology. Available online 10 April 2015, ISSN 0966-842X, (2015)
Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.
Y. Sawall, A. Al-Sofyani, S. Hohn, E. Banguera-Hinestroza, C.R. Voolstra, M. Wahl
Scientific Report 5, (2015)
Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology.
M. Ziegler, C.M. Roder, C. Büchel, C.R. Voolstra
Frontiers in Marine Science, Volume 2, Issue 4, (2015)
Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity.
A. Roik, T. Röthig, C. Roder, P.J. Müller, C.R. Voolstra
PeerJ, Volume 3, e734, (2015)
High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: An in situ photophysiology experiment.
R. van der Merwe, T. Röthig, C.R. Voolstra, M.A. Ochsenkühn, S. Lattemann, G.L. Amy
Frontiers in Marine Science, Volume 1, Issue 58, (2014)
Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea.
Y. Sawall, A. Al-Sofyani, E. Banguera-Hinestroza, C.R. Voolstra
PLoS ONE, Volume 9, Issue 8, e103179, (2014)
Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region.
C. Arif, C. Daniels, T. Bayer, E. Banguera-Hinestroza, A. Barbrook, C.J. Howe, T.C. LaJeunesse , C.R. Voolstra
Molecular Ecology 201, Volume 23, Issue 17, (2014)
Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea.
M. Ziegler, C. Roder, C. Büchel, C.R. Voolstra
Coral Reefs, Volume 33, 1115-1129, (2014)
Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata.
Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM, DeSantis TZ, Brodie EL, Weber MX, Voolstra CR, Andersen GL, Medina M
The ISME journal, Volume 8, 2411-2422, (2014)
In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea.
C. Jessen, C.R. Voolstra, C. Wild
PeerJ, Volume 2, e339, (2014)
Bacterial Profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome.
C. Roder, C. Arif, C. Daniels, E. Weil, C.R. Voolstra
Molecular Ecology 2014, Volume 23, Issue 4, 965-974, (2014)
Bacterial profiling of White Plague Disease in a comparative coral species framework.
C. Roder, C. Arif, T. Bayer, M. Aranda, C. Daniels, A. Shibl, S. Chavanich, C.R. Voolstra
The ISME journal, Volume 8, 31-39, (2014)
Critical research needs for identifying future changes in Gulf coral reef ecosystems.
D.A. Feary, J.A. Burt, A.G. Bauman,S. Al Hazeem, M.A. Abdel-Moati,K.A. Al-Khalifa, D.M. Anderson, C. Amos, A. Baker, A. Bartholomew, R. Bento, G.H. Cavalcante, C.A. Chen, S.L. Coles, K. Dab, A.M. Fowler, D. George, E. Grandcourt, R. Hill, D.M. John, D.A. Jones, S. Keshavmurthy, H. Mahmoud, M.M. Och Tapeh, P.G. Mostafavi , H. Naser, M. Pichon, S. Purkis, B. Riegl, K. Samimi-Namin, C. Sheppard, J.V. Samiei, C.R. Voolstra, J. Wiedenmann
Marine Pollution Bulletin, Volume 72, Issue 2, 406-416, (2013)
In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea.
C. Jessen, C. Roder, J.F. Villa Lizcano, C.R. Voolstra, C. Wild
PLoS ONE, Volume 8, Issue 6, e66992, (2013).
In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii.
C. Jessen C, J.F. Villa Lizcano, T. Bayer, C. Roder, M. Aranda, C. Wild, C.R. Voolstra
PLoS ONE, Volume 8, Issue 4, e62091, (2013)